
The text-based environment
for blind persons: conception
and operating system design

Michael Pozhidaev
michael.pozhidaev@gmail.com

International research journal, 2013,

issue 2, pp. 63-66
(ISSN 2227–6017)

The paper covers conclusions

of the attempt to create a prototype

of text-based user environment with-

out graphical objects and operating

system based on it. The acquired

results prove the conception is suit-

able for handy device for wide range

of blind users. The technical details

for further research are suggested.

Keywords: accessibility, blind per-
sons, GNU/Linux, Java, operating
systems.

Introduction

Various information technologies became an

essential part of social and professional life,
but level of their accessibility for blind and

visual impaired persons remains still insuffi-
cient. Although some results and experience

in this area are acquired so far, blind and

visually impaired users are not able to feel
themselves completely free using PCs and

mobile devices. That fact can be treated as
one of the reasons tackling high integration

of disabled people into social life.

Currently the popular way is to install
some screen reading software, such as Jaws

for Windows by Freedom Scientific [11],
VoiceOver by Apple Inc. [2], as well as Orca

[15] — the favourite solution of GNU/Linux
users. This software takes the informa-

tion on screen and transforms it into speech
form, describing any action user does. To-
day there is a ubiquitous Graphic User In-

terface (GUI) almost on every computer and
it is the most important problem we should

take into account here. This type of user in-
terface (UI) was designed to be controlled

mostly by mouse, as well as other point-
ing devices. This input method is rather

convenient for sighted users, but for blind
persons it is not the case. They are en-
forced to navigate over graphical objects on

a screen, such as window widgets, menus, di-
alogs by keyboard only and this way takes

a lot of extra time to do. The mentioned way
can be considered as appropriate for work

at home or at office, but in crowded and
noisy environment, such as at international
airport, show or conference, it is turned out

completely unacceptable. In addition, run-
ning OS with full GUI takes more hardware

resources than it is needed for accessible so-
lution itself. This paper offers an accessible

OS of a new design based on GNU/Linux and
covers the experience already got by creating

preliminary prototypes.

1

1 First prototypes

The work on the initial prototype was

launched in 2008 as an attempt to create light
accessible distribution for blind users [21, 22,

23, 24]. It uses GNU Emacs [8] as a main
user environment with added special exten-
sion by T. V. Raman from Google Inc called

Emacspeak [6]. The system is based on the
Linux kernel and is applicable for installation

without any external sighted help, except of
boot device selecting in BIOS setup utility,

which does not use any features from exter-
nal software and evidently is not compati-

ble with any speech-based accessibility. The
installation process is performed by copying
live-CD environment to a hard drive as it

is with several minor fixes. We will not de-
scribe this technique in details here, since it

is widely popular and well-known approach.
The only important thing is that cloning pro-

cess doesn’t require any UI and can be done
by single command launch with provided set

of necessary parameters.

The environment was enhanced with some

additional software developed by the au-
thors as part of work on the system be-

ing described. This software includes tools
for text books listening with text-to-speech

(TTS) engines, main menu plug-in for quick
applications launch, media player control
service (will be described later), the set

of auxiliary scripts and so called speech
server. The speech server is needed to man-

age stream of speech commands in real-time
mode and to prevent simultaneous speech

signals overlapping. It doesn’t synthesize
speech by itself and uses external TTS en-

gines, in particular, RHVOice [16].

Although this distribution failed as instru-
ment for wide range of users, it brings impor-

tant experience, proving the general concep-
tion is right. As known, GNU Emacs aims to

be a flexible text editor but during develop-
ing process list of its features went out of ed-
itor purposes. Now it contains file manager,

mail and news reader, calendar, FTP client
and very restricted web browser. The cru-

cial advantage allowing consider it as an ac-
cessible environment is an ability to bring

to user every working object in text form.
For example, mail message can be easily con-

structed as text file with recipient address on
the first line, the subject on the second and
with message content on all others. Nearly

all needed operations could be reorganized
this way if they don’t imply graphic materi-

als. GNU Emacs is also capable with show-
ing web-pages in text form, providing con-

tent as one text document and excluding pic-
tures. While user navigates over prepared

text object, the speech extension listens all
cursor movements and forwards stream of
commands to speech server for further trans-

lation into audio form. If user moves from
one text line to another he hears line text

under new position and hears new character
in case of moving left-right inside of one line.

This system became a working plat-
form for its developers for several years
and it makes possible to get some conclu-

sions about its advantages and disadvan-
tages. The main advantage is a a very high

speed of working process. With some user
training, speed approaches to speed of usual

sighted work. It can be explained by user in-
terface simplicity, since it doesn’t have any

GUI elements. A user doesn’t take care

2

about what objects he has on a screen and
how they are organized. Even more, any as-

sociation between objects and their graphic
representation is not required at all. In ad-

dition, light environment yields low system
resources consumption and it makes possi-
ble using of cheap mobile devices. One of

the installations was performed on ASUS
EEE PC 1025C netbook ($330 in Amazon

shop) and it was successfully used in travel
and during conferences participating. That

experience implies tasks successfully done
during flights and work inside of crowded

and noisy airports, including three the bus-
iest airports in Europe (London Heathrow,
Paris Charles de Gaulle and Frankfurt-am-

Main) and three international Moscow air-
ports. The set of performed tasks cov-

ers maintaining wifi-connection for mail and
news reading, handy notes, mp3 and text

books reading and rarely voice recording.

Actually, a wide range of accessible tasks

can be easily explained by large variety of
software available among GNU/Linux dis-
tributions, but some additional possibili-

ties should be mentioned especially detailly.
There are two graphic software packages: La-

tex [12] and Lilypond [13], capable with tak-
ing input material in form of text files. Latex

is a publishing system for physics and math-
ematics books or papers and Lilypond is a
music score typesetter. Both of them gives a

very high quality of an output and remains
accessible for blind users. Known experience

proves they are a real way to create materials
even at scale of thesis. Final sighted checking

of an issue is still required but work is done
mostly by blind persons on their own. That

software is a very special case due to high

level of required user skills but anyway we
would like to mention it. Latex can also pro-

duce presentations in pdf-format (proved by
known experience of blind users), can include

graphic figures constructed by text form com-
mands and embed music objects from Lily-
pond.

We took a look what this system offers,
but more important is the set of discovered

disadvantages, making prepared system in-
appropriate to be used widely. The develop-

ers team is about to give up any active work
on GNU Emacs approach due to following

reasons:

1. Weak protection against improper user

actions. Even a very easy inaccurate
step breaks proper system behaviour.

GNU Emacs completely relies on user
awareness what he does.

2. The platform is not suitable for devel-
oping complex user applications. The
GNU Emacs is a Lisp run-time envi-

ronment purposed for managing a set
of text areas. All of such areas called

“buffers” are linked weakly with each
other and any attempt to create an

application with more than one buffer
gives generally unstable product with a

lot of glitches. The system must be ca-
pable of quick extensions creating be-
cause user needs various add-ons for so-

cial networks, blogs reading and access
to other web-services.

3. Web-browser without Java Script sup-
port. Web-browsers became something

grater than applications for HTML-
pages viewing and may be described

in turms of a platforms for launching

3

web-applications. GNU Emacs has a
text-mode browser that can be used for

HTML-pages parsing but nothing else.

4. User unfriendly interface. The environ-
ment of GNU Emacs can be considered

suitable only for professional users with
high level of experience in GNU/Linux.

No national language support is avail-
able.

5. No support for some closed but freely
available application such as Skype and

maybe some others. Skype has an acces-
sibility support but it cannot be covered

by any GNU Emacs utilities.

6. No support for popular office documents
formats.

Since a lot of free and open source software
is available publicly, it should be involved in
new accessible environment creation. In two

sections below we will describe new UI ap-
proach and general design of accessible OS

free from disadvantages listed above as far as
it possible.

2 New user environment

New user environment should consist of fol-
lowing items on a screen:

1. A set of tiled working areas

2. A easy access command line for a quick
operations launch

3. A popups support for dialogs and inter-
actions

4. Main and context menus

Nearly all of these things came from GNU
Emacs as they are, but they should be

managed by general application mechanism,
which GNU Emacs doesn’t have. Every text

area should be strongly associated with some
application and must be closed on applica-
tion shutdown. All text areas are displayed in

tiled mode on the screen and currently active
application should decide which of them and

how must be shown. User should be allowed
to switch from one application to another

quickly (for example, by Alt+Tab key com-
bination) with switching of all corresponding

visible areas on a screen. One more impor-
tant feature is a quick text search through
text in any visible area without application

support.

The term “text area” we used here implies
rectangular area on the screen filled with

some text shown by monospaced font. Text
color and size should be available for chang-

ing easily by system-wide commands with-
out any application support. On screen con-
tent must be capable of using by users with

low vision (not totally blind). The low vi-
sion users can request a feature of highlight-

ing with the easy grey background row and
column, where cursor is placed.

A command line support plays highly im-

portant role in suggested approach. In con-
trast to widely popular GNU/Linux shell ex-
pressions, a command line, we are describ-

ing, should accept short words suitable for
quick typing. Inside of noisy room it is eas-

ier to press Alt+x on keyboard to invoke
command line, type “news”, “mail”, “mes-

sage” or whatever else user wants to launch,
than to look for required item in menus lis-

tening speech output. The keyboard com-

4

bination Alt+x is taken from GNU Emacs
and, surely, it is really convenient way. We

consider a command line here as particular
case of “popup” area. Popup areas are text

areas shown on screen at bottom for a short
time and purposed for additional user inter-
actions or conversations. Popup areas can be

also applicable for various types of menus.

Java SE [10] is chosen as the main pro-

gramming language for developing accessible
environment itself, as well as for all user ap-
plications. There are a lot of well-known

Java libraries available publicly, providing
various functions needed for user applica-

tions. We mean here JavaMail [9] for mail
reading, Rome [18] for RSS parsing, Apache

POI [1] for office documents filters etc. A
user interface layout for each particular ap-

plication is not described here, since in most
cases it is quite obvious. For example, mail
reader should consist of three areas: mail

groups, the list of mail messages in a group
and selected message text. The file manager

looks like usual twin-panel manager with ad-
ditional area at a bottom of screen for list

of active tasks (files copying, moving etc).
General user navigation over text objects and
whole system can be taken from GNU Emacs

and left almost without any changes. It is a
very good part of GNU Emacs legacy, ex-

cept of one thing: spoken text must be con-
structed by application and it may be dif-

ferent than text on screen. In GNU Emacs
user hears always a text on screen, gathered

by emacspeak.

3 System core

We should take a close look at system core
behind accessible UI. It consists of several

components listed below:

1. An event queue launched inside of Java

virtual machine with separate thread

2. An LDAP interface for flexible user data

storing, like address book, calendar etc

3. D-Bus [7] for access to a number of sys-
tem services

4. An auxiliary service for media player
control

5. A speech server

6. A speech-enabled window manager for

X.org

7. A small screen reader based on AT-SPI
[3] services.

The event queue stands here for central
dispatcher of events and the most impor-

tant of them, of course, are user input com-
mands. That queue should be also accessi-

ble for an events exchanging between several
applications, being running in the environ-

ment. It is very important thing because
this feature is the most proper way for multi-
threaded applications synchronization.

Now there is a general moving in

GNU/Linux world toward D-Bus system ser-
vices and that fact makes a lot of things

easier for system developing. Using D-Bus,
which has good support in Java, we can get

a easy control over key system services, like
Udisks [19] for removable drives, Network

Manager [14] for network connections and

5

others. Systemd service [17] should be men-
tioned here as an especially hopeful sugges-

tion, but needs more time for clarification
whether Systemd is really able to become a

reliable low-level component or not.

Media player service must take care of
any user commands to listen music file or

“speaking book”. It should be controlled also
through D-Bus and invoke real media player
(very likely VLC [20]). Media player can not

be launched directly, since blind user needs
some features for “speaking books” (litera-

ture recorded by narrator as audio files) in-
cluding bookmarks managing etc. In addi-

tion there is a special format of books for
blind persons called Daisy [5] and it also
should be supported at the level of media

player control service.

4 A wWeb-browser and

the AT-SPI applications

There is a couple of special cases when user

has to deal with tradition GUI anyway :

1. A web-browser

2. Closed popular applications (e.g.,
Skype)

Without these applications support our
system can not be considered full. In case
of web-browser its nature doesn’t allow ex-

press its functionality in any text only form.
Skype, due to its license restrictions, should

be taken as a whole binary application.
Hence, we have to implement some things,

making these application available for blind
users, although both of them evidently are

exceptions in proposed conception of text

only interface. Fortunately, GNU/Linux
GUI has additional service called AT-SPI,

helping disabled persons operate with GUI
applications and it remains still available for

us. If we choose Firefox as suitable web-
browser we can use it and Skype through
AT-SPI functions. Regarding web-browser

we should notice, to be fair, there is one
more solution — ChromeVox add-on [4]

for Chrome/Chromium browser, but its less
comfortable because it generates speech by

itself and doesn’t expose any data outside of
browser.

That means there is no way to pick up
browser data from external tools, for exam-

ple, to be copied into custom buffers, like
clipboard. Since we rejected any existing

GUI we can not use prepared screen read-
ers used for transforming AT-SPI data into
speech and have to implement its replace-

ment.

The last thing that we need to get our
design completed, is a tiny window man-
ager. Main Java virtual machine we have

described in previous sections and additional
applications like Firefox or Skype are inde-

pendent processes with their own windows on
a screen controlled by X.org server. A spe-

cial speech-enabled window manager should
be created to link all of them into one whole
suite. Java environment could be consid-

ered as main application playing predomi-
nant role. Other applications became avail-

able easily with simple way to switch between
them with informative speech notifications.

There is no need to develop such window
manager from scratch since there are a lot

of simple suitable examples.

6

Conclusions

The design described here is currently in ac-
tive development and authors intent to cre-

ate a prototype suited for illustration what
such system could be used for (the project is
designated as “LUWRAIN”). Meantime a lot

of required components are already created
since almost all of the tasks are the widely

known problems solved by large variety of
FOSS projects. The only thing should be

written completely from scratch is the Java
user environment and its conception is the

main research goal.

A couple of related questions stays undis-

cussed with these paper. First of them is the
braille display support. These theme doesn’t

need any research since Os just has to sup-
port corresponding devices. The second is
a using of tablet computers. A tablets are

a big problem, because this sort of devices
can be used only through tracking graphical

objects position on a screen. Anyway, this
area needs a lot of deep research, respect-

ing experience of the projects providing ac-
cessibility for multi-touch devices. It is es-

pecially important due to threat for low-cost
laptops by tablets in current market situa-
tion. As a matter of fact, some companies

are about to prefer tablets production rather
low-cost laptops.

However, a lot of cheap embedded com-
puters based on ARM architecture are com-

ing and they should be considered as real
companions for wide range of disabled per-

sons. GUI doesn’t play valuable role in their
using and we may expect demand of any text-

based solutions.

References

[1] Apache POI — the Java API for Mi-

crosoft Documents //
http://poi.apache.org/

[2] Apple — Accessibility — VoiceOver —

In Depth //
http://www.apple.com/accessibility/

/voiceover/

[3] Assistive Technology Service Provider

Interface //
http://www.linuxfoundation.org/ /col-
laborate/workgroups/accessibility/

/atk/at-spi

[4] ChromeVox //

http://www.chromevox.com/

[5] DAISY Consortium //
http://www.daisy.org/

[6] Emacspeak — The Complete Audio
Desktop //

http://emacspeak.sourceforge.net/

[7] freedesktop.org — Software/dbus //
http://www.freedesktop.org/wiki/ /Soft-

ware/dbus

[8] GNU Emacs //
http://www.gnu.org/software/emacs/

[9] JavaMail API //
http://www.oracle.com/technetwork/

/java/javamail/index.html

[10] Java Standard Edition //
http://www.oracle.com/technetwork/

/java/javase/index.html

[11] JAWS Screen Reading Software by Free-

dom Scientific //

7

http://www.freedomscientific.com/
/products/fs/jaws-product-page.asp

[12] LaTeX — A document preparation sys-
tem //

http://www.latex-project.org/

[13] Lilypond //

http://www.lilypond.org

[14] Network Manager //
http://projects.gnome.org //Network-

Manager/

[15] Orca //

https://live.gnome.org/Orca

[16] RHVoice //

https://github.com/Olga-
Yakovleva/RHVoice

[17] Systemd //
http://freedesktop.org/wiki/Software/
/systemd/

[18] The Rome projects //
http://rometools.org/

[19] Udisks //
http://www.freedesktop.org/wiki/ /Soft-

ware/udisks

[20] VideoLAN — Official page for VLC me-

dia player //
http://www.videolan.org/vlc/

[21] Pozhidaev M. S. The description
of ALT Linux based solution for the blind

// Information technologies for the blind
in the modern world. Problems and

prospects: Proceedings of the 7th con-
ference (December 4, 2008). — Moscow.:
2008. — pp. 82–86

[22] Pozhidaev M. S., Kamynin ‘A. N. Evo-
lution of the environment for the blind
ALT Linux Homeros // 7th confer-

ence of FOSS developers “On Trubezhe”.
Pereslavl, June 26–27, 2010 Proceedings

of the conference. — Moscow. : Institute
of logic, 2010. — pp. 78–80

[23] Pozhidaev M. S. The distribution

with accessibility technologies ALT Linux
Homeros: the first experience // The 8th

conference of FOSS developers: pro-
ceedings / Obninsk, July 25–26, 2011
Moscow.: ALT Linux, 2011. pp. 9–11

[24] Pozhidaev M. S. Developing and
prospects of the distribution with acces-
sibility technologies ALT Linux Homeros

// Open technologies: proceedings
of the 8th international conference

“Linux Vacation / Eastern Europe”
2012, Grodno, June 07–10, 2012 /

Ed. Kostuck D. A. — Brest: Alternative.
— pp. 23–25

8

	First prototypes
	New user environment
	System core
	A wWeb-browser and the AT-SPI applications

