
Minimalistic user interfaces:
the case for blind persons

Michael Pozhidaev
michael.pozhidaev@gmail.com

Proceedings of the 7th conference “Eastern
partnership”

(Przemysl, Poland,

September 7–15, 2013)

Although widely popular graphical user
interface (GUI) provides nearly all features
users need for interaction with various types

of computers, there are some cases when it
is come out that GUI is not really the most

suitable approach. Usually it is some kind
of remote or embedded systems, terminals

and so on, which have to follow some another
conception due to performance or communi-

cation restrictions. We’d like to consider
here one more case: minimalistic user in-
terface designed for blind persons. Speaking

in a few words what is a problem with GUI
for blind persons, it is enough to mention

that, on the one hand, GUI is designed to be
controlled basically through mouse, which

remains mostly inaccessible for blind users,
and, on the other hand, GUI brings to user
a lot of information usually turned out com-

pletely needless for a user without sight, but
who still has to handle it during navigation

procedures. We have no intentions to prove
this statement, since it is quite obvious that

GUI interaction takes a lot of extra time
for navigation for blind users, and would like

to propose real design of a minimalistic en-

vironment for blind users, which can be ac-
cepted as rather suitable for practice accord-

ing to our experience and is chosen for im-
plementation in LUWRAIN project.

First of all, we need to state what real

requirements should be taken into account.
These requirements could be itself a subject
for research since it is not obvious what set

of user interface elements is enough to cover
all features, which system should provide

for sufficient interaction. As it was shown
earlier in [1] nearly all work object can be

represented strictly in text form: text edit,
lists, trees etc. Blind users can navigate over

text blocks well, so, roughly speaking, appli-
cations should be a set of ”areas” suitable
for representation of text information. Al-

though blind users gets any feedback through
speech output, corresponding the on screen

output still should be maintained properly,
since it is needed by users with partial sight.

We describe there basically on screen visual
content, implying speech output is also pro-
vided.

In the conception we propose, entire

screen is divided onto several areas shown
in tiled mode. We will suggest correspond-

ing structure and algorithm for handling area
tiles, but now it is necessary to consider

how applications can handle user commands.
No problems to use general events approach
to translate any user input as it is used in

various GUI implementations, but there are
special cases needed for user dialogs and

undesirable operation interruption. Using
the term “user dialog” we mean special text

area shown on a screen as one function call,
which does not return until area is closed.

Such dialogs can be used for user confirma-

1



tions, files selections and so on. The calling
procedure waits user decision and continues

depending on user answer. Here is the list
of all features which we consider enough

to construct usual variety of things applica-
tions need:

• User interacts with a set of applications
and he should be able to switch between

each other quickly

• Each of the applications should consist
of set of text areas shown on the screen

in tiled mode

• Applications sshould be able to open di-
alogs areas as they are defined above

• User should be able to interrupt unde-

sirable operation launched by an appli-
cation

• There should be a method for quick in-

formation search in opened areas

• Applications should be able to operate
in multithreaded mode

Well, the implementation of several

of these requirements is quite obvious, but
for others we had to perform additional re-

search and experiments. let take a look
how to satisfy them. We should begin

from execution threads model. The model
of threads is related to events queue essen-
tially. As we propose, there should be one

and only one event queue in any given time
as a pivot of a general design. Every-

thing else revolves around it. This queue
should accept two types of events: user input

events and thread synchronization events.
All of them have one common property: des-

tination application or destination area they

sent to. Evidently, the events of both types
can be collected only in common threads-safe

queue. Otherwise there can appear a race
condition.

Moreover, input events source (the code

for keyboard touching reading) must be ex-
ecuted in a separate thread. That must
be done this way because user should have

a method to cancel the operation he don’t
want to continue anymore. In this case, he

presses special keys combination to cancel en-
tire the events reading thread and restarts it

again.

Actually, there is one another problem
related to the events reading thread can-
celling. Let take a look at user dialogs im-

plementation. As it was mentioned above,
user dialog area is appeared inside of one

special method call, but since events read-
ing and events handling are performed in

one single thread (multithread implementa-
tion is also possible but rather more com-

plicated and significantly more system re-
source consuming), until this method is fin-
ished, none of the other events can be pro-

cessed. But events handling must be con-
tinued as it is needed for interaction with

user dialog area itself. This problem can be
easily solved by launching one more events

reading and dispatching procedure until cor-
responding area is closed. It can be done
with the same thread, no problems with that.

But it causes one more difficult situation. Let
user has many opened dialogs (and that im-

plies he has many launched but paused pro-
cedures for events reading), and with this

circumstances user suddenly decides to close
one of the application, having opened dialog

somewhere in the middle of the call stack.

2



It is impossible as we are not able to remove
anything from the call stack, unless we cancel

entire execution thread for events handling
with all opened dialogs. It looks like a rather

rough method but actually It is quite appro-
priate solution, and that gives one more rea-
son to have two threads: one as events origin

and another for events dispatching.
We’d like to suggest one more structure

with corresponding algorithm for its process-
ing within requirements above. We have

mentioned text areas on the screen should
be shown in tiled mode, but strategy how

to obtain exact areas positions and size re-
mains still unclear. Entire tiles structure can
be represented in binary tree. Each node

of this tree can be one of the two types: nodes
for vertical dividing and nodes for horizontal

dividing. Each leaf in this tree is an area
to show on the screen. Entire screen width

and height are given, how to get convenient
areas coordinates automatically? We pro-

pose the following procedure:

1. With each of the nodes (not leaves) spe-

cial number must be associated: how
many leaves are there under this node.

These numbers should be calculated
by obvious recursive procedure.

2. From the root node let do the following

recursive procedure:

(a) On each invocation the procedure

receives node and rectangular part
of the screen (on initial invocation

the entire screen)

(b) If received node is a leaf
(area) it gets corresponding part
of the screen

(c) Otherwise received region is divided

horizontally or vertically (according
to node type). Portions of the parts

after the dividing should be calcu-
lated proportionally to the numbers

of each branch assigned on the first
step of this algorithm. After that

both branches must be processed
with this procedure recursively.

This algorithm yields rather accurate di-

viding, but it can be improved by adding
the processing of dialog areas as a special

case.

References

[1] Pozhidaev M. Text-based environment for

blind persons: conception and operating
system design // International research

journal, 2013, issue 2, pp. 63–66.

3


